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Abstract
Creating new concepts from data is a hard problem in the
development of cognitive architectures, but one that must be
solved for the BICA community to declare success. Two
concept generation algorithms are presented here that are
appropriate to different levels of concept abstraction: state-
space partitioning with decision trees and context-based
similarity.

Introduction
The challenge of developing novel concepts from raw sen-
sory data is central to the effort to make intelligent machines.
The majority of cognitive architectures begin with a pre-
defined set of concepts (also referred to as categories, per-
cepts, classes, or domains). The set of concepts is typically
selected by the programmer and fixed. However, the abil-
ity to create new concepts from a set of observations is a
key cognitive ability. It allows adaptation to new environ-
ments and tasks, re-interpretation of past experiences, and
increasingly abstract processing. It is arguable that the goal
of machine cognition is unobtainable without this capability.

Previous work directed at creating concepts based on ob-
served data (also termed conceptual clustering) includes the
CLUSTER/2 algorithm, COBWEB, and UNIMEM. CLUS-
TER/2 uses a method called conjunctive conceptual clus-
tering to produce a partition of the input state space. The
partitioning on a data set is optimized on a number of cri-
teria, with an emphasis on simplicity. (Michalski and Stepp
1983) COBWEB is somewhat similar, optimizing the parti-
tioning on the extent to which the partition allows prediction
of individual attribute values within each concept. (Fisher
1987) UNIMEM classifies specific observations into a hier-
archy of generalization, based on their individual attribute
values. (Lebowitz 1987) COBWEB and UNIMEM are no-
table for being incremental, that is, they incorporate new
data as they are received.

As the term is used here a “concept” is a set of numerical
or symbolic data that are closely related. More specifically,
the data within a single concept are, to a certain extent, in-
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terchangeable. A reference to a concept may equally well be
referring to any member of the concept set. In this way, con-
cepts allow a granularity of representation that can greatly
reduce the size of the state space required to represent a data
set.

For instance, the mass of an apple may be measured with
arbitrary accuracy and thus may be represented by a real
number. This variable may take on infinitely many values,
even if given an upper and lower bound for the mass. How-
ever, the apples may be classified into groups based on the
conceptsbig andsmall, reducing the size of the state space
to just two possible values.

A similar process can be followed with symbolic data.
The symbols (more specifically in this example, strings)ap-
ple, orange, banana, andgrapecould be referenced inter-
changeably in some cases. The concept offruit to which
these all belong allows the whole set of them to be referred
to generically.

It should be noted that interchangeability is just one way
that data can be related. Nearness (co-occurrence, adja-
cency, or temporal proximity) is another. Co-occurrence
is used as the basis for relatedness in the majority of nat-
ural language processing approaches. A prominent ex-
ample of this is the bag-of-words mechanism that under-
lies Latent Semantic Analysis (LSA) (Landauer and Du-
mais 1997), an algorithm that identifies concept-like sets
of terms. A related approach is the fixed-length window
used in the Hyperspace Analog to Language (HAL) model
of sematic distance. (Lund, Burgess, and Atchley 1995)
CBS, however, is based on substitutability, a similarity cri-
terion espoused by some of the earliest practitioners of com-
putational linguistics (Rubenstein and Goodenough 1965;
Miller and Charles 1991) and used in some current efforts
as well (McCallum 1996; Wang, McCallum, and Wei 2007).
An approach extremely similar to CBS was published in
2006 (Carbonell et al. 2006), just one year after the first
published description of CBS (Hulet, Rohrer, and Warnick
2005).

In this paper we describe two approaches to the prob-
lem of deriving new concepts from data. Each has various
strengths and likely areas of applicability. The first, state
space partitioning with decision trees, is appropriate to cre-
ating concepts out of low level data that may be numerical,
symbolic, or a combination of the two. The second, context-



based similarity (CBS), is suited to building concepts out of
symbolic data, specifically a serial stream of symbols.

Method I: State-space partitioning with
decision trees

Decision trees (Bentley 1975; Breiman et al. 1984; Quin-
lan 1987) can be used to partition the state space, mapping
regions of the state space onto a hierarchy of concepts. It
creates concepts by subdividing the input state space of the
cognitive system. Each region created by dividing the state
space represents a separate concept. Those areas of the state
space in which the most observations occur are subdivided
most finely, concentrating representational resources where
they are most needed. The resulting hierarchy of divisions is
represented as a decision tree. This approach is best suitedto
low-level data in parallel streams, although it may be applied
to any form of data, and it operates on-line and in real-time.

In order to facilitate the creation of a decision tree, the
input is represented as a vector. Each element of the vec-
tor may be valued appropriate to the data type it represents.
Continuous data is represented with real numbers. Either in-
tegers of reals can be used to represent discrete data. Integers
may also be used to represent ordinal data or membership in
one of several categories. Symbols and attribute data may be
represented with binary values. The exact form of the repre-
sentation is not critical, as long as every distinct set of data
values can be mapped to a unique numerical vector. The set
of all possible values of the vector defines the extent of the
state space. The number of elements in the vector define the
number of state space dimensions.

Concept creation through subdivision
There are (at least) two ways to autonomously create par-
titions within the state space: through agglomerative clus-
tering or through subdividing. In clustering, all the individ-
ual points in the state space are initially treated as separate
concepts, then placed into larger groups representing more
general concepts over time. In subdividing, the state space
is treated as one super-concept, which is repeatedly divided
into finer and finer-grained concepts. This second approach
is used here, with a variant of a decision tree representing
the hierarchy of divisions.

The algorithm for bisecting the state space has only to
decide when to divide it and along which dimension. The
method used is as follows:

1. Accept a new state observation.

2. Traverse the tree to find the appropriate concept (leaf).

3. If the number of observations within that leaf is greater
than a threshold, subdivide it and create two children
leaves.

4. Repeat.

The dimension along which to divide the subspace is that
which most evenly divides the prior observations within that
subspace. If the prior observations are all at one point within
the subspace, subdivision would result in an empty subspace
and is avoided. This encourages an economical conceptual

representation of the state space. New concepts are not cre-
ated for subspaces until they are visited repeatedly. It should
be noted that although the decision tree uses a numerical
vector, it does not impose any assumptions of metricity on
the state space. That is, points that lie near each other, as
defined by the Euclidean norm or any otherp-norm, are not
necessarily assumed to be more closely related conceptually.
However, thanks to the numerical representation, if such an
association does exist the decision tree can take advantageof
it. Similarity between concepts (leaves on the tree) is mea-
sured by the number of nodes that must be climbed to find
a common ancestor. An illustration of a simplie partitioning
tree is shown in Figure 1.
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Figure 1: Schematic of a decision tree representing a con-
cept hierarchy for a three-dimensional binary state space.
The root node at the far left encompasses the entire state
space. This is reflected in the fact that all three dimensions
are unspecified. The first generation of nodes was created
by dividing along the second dimension. In the first genera-
tion, the values of the second vector element indicate which
branch corresponds to which half of the bisected dimension.

In addition to the fact that decision trees provide a natu-
ral structure for representing the repeated subdivision ofthe
state space, they also are computationally efficient, allowing
for searches inO(log n) time.

The decision tree approach reproduces an intuitive aspect
of human psychological behavior: conceptual representation
is most highly refined where it is most required. As an ex-
ample, when first exposed to specific dogs we might con-
ceptually group all dogs asdog. However, after further ex-
posure, we are likely to generate more specific concepts such
asborder collie, chow chow, andpoodle. Additional expo-
sure may refine those concepts further to includestandard
poodle, miniature poodle, andtoy poodle.

Robot implementation
The state space division algorithm described above was
coded in Java and demonstrated with a Surveyor SRV-1 mo-
bile robot (Surveyor Corporation, San Luis Obispo, Califor-
nia, USA). The SRV-1 is a tracked robot with a frontward-
mounted color CCD and a Bluetooth radio. (Figure 2) It
is relatively small, at 12 cm× 10 cm× 8 cm and weighs
approximately 350 g. A video of the robot in action can
be found at (Rohrer 2009b). The complete Java code used
to control the robot, read in sensor data, and create the de-
cision tree can be found at (Rohrer 2009a) in the package
“beccaSRV”.

The robot occupied a 102 cm× 72 cm room with black
walls 40 cm high and a black floor. In the center of each



Figure 2: The Surveyor SRV-1 robot.

wall was a white stripe 13 cm wide extending the height of
the wall. (Figure 3a) At each time step the robot returned
an image from its camera to the controlling computer. (Fig-
ure 3b)

The color image from the robot was heavily pixelated to
create 24 pixels, each with 5 grayscale values. Even at that
coarse resolution, the state space contained524 (> 1016)
points, far more than could be explored in reasonable time.
However, in practice the majority of those points would
never be visited, and an even coarser grouping would be suf-
ficient to allow the robot to achieve its goals.

Examination of the algorithm’s performance during the
robot’s operation shows that the number of concepts created
is indeed far smaller than the size of the state space, even
for much reduced state spaces where full exploration is fea-
sible. Specifically, binary dimensions that never change are
not subdivided, resulting in an economy of representation.

Method II: Context-Based Similarity
A second concept creation method called Context-Based
Similarity (CBS) groups states or symbols based on the
states or symbols that temporally precede and follow
them. (Hulet, Rohrer, and Warnick 2005) In contrast to state
space partitioning, CBS creates concepts by agglomeration
rather than subdivision. It creates concepts by groups of
states, stimuli, or symbols that tend to occur in the same con-
text. Here, “context” refers to the surrounding elements in
the temporal sequence—those symbols that precede and fol-
low the symbols of interest. The set of symbols that shares
a given context constitutes a concept. This approach is well
suited to high-level symbolic data in sequential streams and
operates off-line. An example of CBS in a natural language
processing application is shown in Figure 4. However, CBS
uses no domain knowledge and would be equally applica-
ble to other symbolic data, including language processing
in Russian or Chinese, discretized and quantized audio or
video data streams, or categorical data of any type.

Semantic clustering is the primary challenge in creating
higher-level concepts from symbolic data. Once object clus-
ters are formed (for instance, a Chevrolet Corvette, a Dodge

a)

b)

Figure 3: The room that served as the robot’s environment.
a) Viewed from above. b) Viewed from the robot’s camera.
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Figure 4: The similarity of two words or phrases can be
judged by the amount of matching context. A target word
(“great”) is supplied. Word sequences containing the target
are identified (e.g. “during a great part of the last half”). The
target prefix (“during a”) and postfix (“part of the last half”)
are identified as well. Sequences containing partial matches
to the prefix and postfix are found (e.g. “for a very large part
of the time”). The portion of the match sequence that falls
between the partial prefix and postfix matches (“very large”)
is called the context fit and is determined to be somewhat re-
lated to the original target. When performed over a large
sequence library, the strength of relation between a target
and each context fit can be estimated based on the statistics
of how many times each context fit is found and the length
of the prefix and postfix matches in each case.



Viper, a Lamborghini Murcielago, and a Ferrari Enzo) then
they can be conceived of as a collective, abstractly. If the
higher-level concept is to be dealt with explicitly, a label
(sports cars) is desirable, but not required. After the con-
cept is created it can be expanded, modified, or re-combined
with other concepts to create yet higher-level concepts. But
at the root of this process is the ability to semantically cluster
symbols (or objects or states) to create concepts.

At a crude level, CBS can be used to model human con-
cept creation. If an enormous simplification is made, con-
scious perception can be approximated by a serial stream of
discrete experiences. Those experiences can then be used in
a manner analogous to that shown in Figure 4 to identify re-
lated experiences. For example, one day a child might hear
the word “candy,” see a gumdrop, then taste the sugar after
putting it in her mouth. The next day she may have a similar
experience, but with a piece of chocolate. In this case, the
audible word “candy” would be the prefix and the sensation
of tasting sugar the postfix. The gumdrop and the chocolate
were both experienced between them and thus would come
to be associated with each other. In this way, images of items
of varying size and appearance can all become conceptually
related. Perceptions across multiple sensor modalities can
become associated in the same way.

CBS is different than the conceptual clustering methods
CLUSTER/2, COBWEB, and UNIMEM in that it does not
use any attribute data. CBS operates on symbol sequences
only, and requires no descriptions, definitions, instances, or
other elaborations of the meanings behind them. In contrast
to some categorizing approaches, the concepts that CBS pro-
duces share important attributes with actual psychological
conceptualizations. The membership of individual percepts
within a concept is graded, rather than binary. (Labov 1973;
Rosch 1975) Taking the concept ofbird as an example, some
animals are more birds than others. Despite the fact that
there is a zoologically-defined class of animals that we refer
to as birds, human subjects classify robins as more essen-
tially bird than chickens. (Rosch 1973) Likely penguins and
emus would be even less so. And the platypus, while not be-
ing a bird, may be classified as somewhatbird thanks to its
duck-like feet and bill. A second aspect of CBS-generated
categories that is consistent with psychology is that a sin-
gle experience may have membership in many categories. A
subtask within some standardized IQ tests illustrates thisas-
pect of human concepts: name as many uses for a brick as
possible within a fixed amount of time. Each separate use for
a brick represents another concept of which a brick is a par-
tial member. A few of the more mundane includebuilding
material, paper weight, andprojectile, but there are far more
creative uses as well. A percept may have membership in
arbitrarily many CBS-generated concepts. And third, since
concept membership is derived from experience, the con-
cepts to which a percept belongs may change as additional
experience is accumulated.

Natural language processing
CBS was applied to the problem of finding similar words
and phrases in the English language, also called semantic
clustering. No grammar, part-of-speech, or syntactic knowl-

edge was used. First a sequence library was built by reading
untagged text, using white space delimited words. To de-
termine word similarity, the user first entered a target query.
The sequence library was then searched for every sequence
containing the target. For each target sequence the word im-
mediately preceding the target (the pre-word) and the word
immediately following the target (the post-word) were lo-
cated. Next, the library was again searched, this time for
every sequence containing the pre-word followed sometime
thereafter by the post-word. These were match sequences.
All phrases found occurring between the pre-word and the
post-word in match sequences were context fits. This consti-
tuted a minimum requirement for contextual similarity. The
two words flanking the target must also have been flanking
any other context fit.

The similarity of context was judged by the number of
additional words, or matches, common between the target
and the context fit, beginning with the pre-word and post-
word and counting outward (see Figure 4). Context fits were
sorted by the number of matches; in the event of a tie, the
context fits were sorted by the number of different contexts
in which they appear. Two words found in a large number of
shared contexts were usually more similar than two words
which appeared in only one common context.

Java code that applies CBS to text processing, including
the code for creating a sequence library from text files, can
be found at (Rohrer 2009a) in the package “beccatext”.

Results
The learner was tested after reading just over 25 million
words from a diverse selection of texts. Figure 5 shows the
first ten results returned on some sample queries, sorted by
the above method. The results indicate that the learner is
able to draw conclusions about strongly related words sim-
ply by observing how the language is used. The learner suc-
cessfully generated groups of similar words using no prede-
fined lookup tables, part-of-speech tags, or other previous
knowledge of the language structure. The results were re-
turned in an order intuitive to humans and suggest an accu-
rate relative degree of similarity between words.

Antonyms, while clearly not synonyms, are strongly re-
lated word pairs, and appeared in similar contexts. Note that
“small” ranks highly similar to “large”. By allowing can-
didate context fits to be of any length, it was also possible
to capture context fits requiring more than one word to ex-
press, such as “very large.” These results support the idea
that similar words appear in similar contexts. Consistently,
the greater the contextual match up between the target and
the context fit, the greater the similarity of the phrases.

Discussion
Both state space partitioning and CBS have demonstrated
the creation new concepts, either from raw data or from
lower-level concepts. The creation of concepts from data
is not addressed often in cognitive architectures. Usually
concepts are created explicitly by a human operator, most
often during the programming of the system. In the SOAR
architecture for example, a set of concepts are pre-defined
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Figure 5: The top ten semantic clustering results for some
common terms in a 25M word corpus. In each case, CBS
identified words and phrases that are semantically related to
the target word. There are several details of the results that
are noteworthy. For the target “seven,” single digit num-
bers were identified as being the most similar, followed by
larger numbers in roughly numerical order. Context fits for
“sugar” included “mace” and “mear”, two baking ingredi-
ents unknown to the authors at the time the test was run.
The word “head” was matched to “father”–this is a figura-
tive synonym, rather than a literal one.

by the programmer. Positive and negative training exam-
ples are hand-labeled by the programmer as well and used
in a type of supervised learning. (Wray and Chong 2003) In
these cases any concept learning that takes place involves
mapping experiences onto pre-existing concepts. If an expe-
rience does not fit well with the set of concepts available to
it, it is typically grouped with the best fit available, however
poor. The creation of new concepts based on the system’s
experience, as demonstrated in this paper, is a deviation from
this convention.

A note on the definition of “concept”
The definition used here of a concept as “a set of numerical
or symbolic data that are closely related” is by no means a
universally accepted one. While there are few definitions of
“concept” that are specific enough to describe a unique algo-
rithmic implementation in software, many definitions share
two common elements. Primarily, a concept is a general
class or idea inferred from specific instances. The definition
used in this paper expresses this notion as well. But in addi-
tion to this, there is often a metaphysical element implied as
well. This element is described variously as a quale (Lewis
1929), a Platonic form, an intentionality (Brentano 1874),
or as the essence or the ideal of the thing being conceptual-
ized. This aspect is not captured in the definition used in this
work. This omission may reasonably be considered by some
to weaken the claims to conceptualization and abstraction
presented above. It is, at its heart, the same criticism made
by Searle of his hypothetical Chinese Room–that although
the room system may appear to understand Chinese to ev-
ery external observation, it is in fact missing some critical
mental element and does not. (Searle 1980)

While common, the idea that concepts comprise more
than sets of specific experiences begs the questions “what
else?” and “how does it come to be associated with expe-
riences?” One possibility is that the essences of concepts

exist prior to humans’ experiencing instances of them. Per-
haps they are part of neural circuitry at birth. This is consis-
tent with the innateness hypothesis, which states that the hu-
man brain is hard wired at birth with specific aspects of lan-
guage (Putnam 1967). Unfortunately, there is no description
of the hypothesized “essence” of a concept specific enough
to be scientifically verified or refuted, so the topic cannot be
appropriately pursued in this forum. For the time being we
will have to carry on with a definition of “concept” that is
possibly partial, but at least concrete.

The definition of concept has direct relevance to the sym-
bol grounding problem (Harnad 1990). As originally posed,
the symbol grounding problem is the problem of assigning
meaning to symbols. In other words, the problem of asso-
ciating specific experiences with concepts. It has proved a
difficult problem to address, but has attracted a good deal
of attention, most often expressed as a supervised learning
algorithm. However, the problem statement supposes that
concepts precede the experiences. If it were the case that
things worked the other way around, that is, that concepts
were formed from experiences, then the symbol grounding
problem would disappear. In fact, it has been argued that the
view of the symbol grounding problem as the need to ap-
propriately assign input data to a set of pre-determined sym-
bols is backward, and that instead symbols should emerge
from low-level sensor data. (Plunkett et al. 1992) This is
precisely the approach taken by state space partitioning and
CBS. State space partitioning creates concepts directly from
low-level data, and CBS creates them lower-level concepts.
In either case, the grounding is trivial.

Why concept creation?
The use of concepts in cognitive architectures uniquely aids
them in performing cognitive tasks. Concepts allow eco-
nomic reference to entire classes of objects, actions, or at-
tributes. Reference to a general class, rather than to a spe-
cific object is the basis for abstraction in communication,
language, and perhaps conscious thought. The sounds of the
word “book” being spoken can become associated with the
texture, heft, and appearance of a dictionary. The group-
ing of these three experiences, along with many others, into
a single concept allows the communication of a rich set of
multisensory experiences with a single spoken word. In ad-
dition, hierarchical conceptual representation allows specific
experiences to be interpreted more generally. For instance,
it allows the experiencethis flying bullet that struck the wall
behind my head just nowto become a genericflying bul-
let, which in turn becomesa projectile, a physical assault,
and most generally,an attack. This in turn allows for the
creation of highly efficient abstract communication, such as
“when attacked, retaliate.” In this way, high level abstrac-
tions also serve as building blocks for reasoning, analogy,
rule creation, logic, and other cognitive activities.

The ability to acquire new concepts from experience has
the potential to give machines far more learning capability
than they currently possess. The fact that most cognitive ar-
chitectures have a set of concepts fixed at compile time pro-
hibits them from creating new representations of their ex-
perience. This narrows their task space. A chess-playing



machine would not be expected to generalize well to an in-
formation retrieval task if it could only represent its world in
terms of bishops, rooks, and board positions. Creating con-
cepts based on a system’s experience allows application to
a much broader task space and helps to ensure that its con-
cepts are of appropriate detail. It also does not rely on the
programmers’ foresight to create a complete list of relevant
concepts. Concept creation helps to bridge the divide be-
tween data-driven, reactive robots and systems that perform
sophisticated reasoning tasks.

Another way of expressing the limitation of fixed concep-
tual representation is that it introduces a large set modeling
assumptions. Depending upon the number and specificity
of the concepts provided, those modeling assumptions may
introduce minor or major limitations on the system’s per-
formance. But providing the capability to create new con-
cepts greatly decreases the constraints on what the system
can ultimately learn to do. Cognitive architectures striving
for human-level generality will not be likely to achieve it in
a system that cannot create new conceptual representations
of its experiences as it learns.
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